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Summary

.This study will demonstrate the importance of application of CNC machines in generation
of gear tooth surfaces with new topology. This topology decreases gear vibration and will
extend the gear capacity and service life. A preliminary investigation by a tooth contact
analysis(TCA) program has shown that gear tooth surfaces in line contact (for instance,
involute helical gears with parallel axes, worm-gear drives with cylindrical worms etc.) are
very sensitive to angular errors of misalignment that cause edge contact and an unfavorable
shape of transmission errors and vibration.

The new topology of gear tooth surfaces is based on the localization of bearing contact,
and the synthesis of a predesigned parabolic function of transmission errors that is able to
absorb a piecewise linear function of transmission errors caused by gear misalignment.

The report will describe the following topics: (1) Description of kinematics of CNC
machines with 6 degrees-of-freedom that can be applied for generation of gear tooth surfaces
with ncw topology. (2) A new method for grinding of gear tooth surfaces by a cone surface

or surface of revolution based on application of CNC machines. This method provides an



optimal approximation of the ground surface to the given one. This method is especially
beneficial when undeveloped ruled surfaces are to be ground. (3) Execution of motions of
the CNC machine. The solution to this problem can be applied as well for the transfer of
machine-tool settings from a conventional generator to the CNC machine.

The developed theory required the derivation of a modified equation of meshing based
on application of the concept of space curves, space curves represented on surfaces, geodesic
curvature, surface torsion etc. Condensed information on these topics of differential geometry

is provided as well.

Introduction

The design and manufacture of gears with new topology of gear tooth surfaces are prob-
lems of great importance for helicopter transmissions. The existing technology of gears is
restricted with the necessity to use cutting and grinding machines whose kinematics is based
on linear relations between the motions of the tool and the workpiece.

The need of low-noise gears with increased load capacity and service life can be satisfied
with a new topology of gear tooth surfaces that is able to provide: (i) a reduced sensitivity to
misalignment and avoidance of edge contact, (ii) a parabolic type of function of transmission
errors to reduce the level of possible vibration, (iii) a localized bearing contact with controlled
dimensions of the instantaneous contact ellipse.

The application of CNC (Computer Numerically Controlled) machines overcomes the
obstacles presented for generation of gears with a new surface topology by using the existing
equipment. The CNC machines are able to provide computer controlled nonlinear relations
between the motions of the tool and the gear being generated. Although such machines are
used at present mainly for the installment of machine-tool settings with higher precision,

their prosperous future is in their application for generation of gears with new topology. The



CNC machines are a unique opportunity for researchers to modify the geometry of traditional
gear drives and benefit industry with gear drives with substantially improved parameters.

The modification of geometry of gear tooth surfaces requires from researchers a new
approach for the development of principles of conjugation of gear tooth surfaces. Application
of conjugate gear tooth surfaces being in instantaneous line contact is in the authors’ opinion
an anachronism. Such gear tooth surfaces are very sensitive to misalignment that causes the
shift of the bearing contact to the edge and transmission errors of such a type that cause
a jerk at the transfer from one cycle of meshing to the next. The considerations above are
true for spur gears, involute helical gears with parallel axes, and worm-gear drives.

It is necessary as well to change the attitude to some finishing processes such as honing
and shaving applied for helical and spur gears. It is not reasonable to require that such
finishing processes would provide the exact screw involute surfaces knowing ahead that only
modified tooth surfaces are to be applied.

The statements mentioned above are illustrated with the following drawings.

Figures 1 to 4 show the influence of angular errors of misalignment Ay and d A, of involute
helical gears with parallel axes that cause edge contact (figures 1 and 3) and piecewise almost
linear functions of transmission errors (figures 2 and 4). The drawings above are based on
the investigation performed by Reference {1]. The design parameters of the helical gears are

shown below:

Nl = 20
N, = 40
1
P, = 1.1985 (—)
mm
o = 20°
pr = 30°
Tooth face width, Fy, = 40.64(mm)

Figures 5, 6 and 7 illustrate the impact of misalignment of worm-gear drives. The shift



of the bearing contact is shown in figures 5 and 6, and the undesirable shift of transmission
errors is shown in figure 7 that will inevitable cause vibration. The drawings are based on
the research accomplished by Reference [2].

The design parameters of the worm-gear drive are shown below:

M = 2

N, = 30

Axial module, m = 8(mm)

vy = 90°
Shortest distance, E, = 176(mm)

Figure 8 illustrates why a predesigned parabolic type of transmission errors is beneficial
for the gears with the new topology (Ref. [3]). This figure illustrates the interaction of
a parabolic function of transmission errors(provided at the stage of synthesis of the gear
tooth surfaces) with a linear function of transmission errors(caused by misalignment). The
combination of these functions is again a parabolic function, with the same slope as the
predesigned one that is translated with respect to the initial parabolic function. This means
that the predesigned parabolic function absorbs the linear function and keeps the shape of
a parabolic function.

There are three cases of generation of the workpiece surface X, by the given tool surface

¥; by CNC machines:

(1) Surfaces ¥, and ¥, are in continuous tangency, however they contact each other at

every instant at a point not a line.

(2) Surfaces £; and X, are in continuous tangency and they contact each other at every
instant at a line. Surface I, is generated in this case as the envelope to the family of

surfaces ¥;. The family of surfaces is generated in relative motion of ¥; to X,.

(3) An approximate method for generation of a surface ¥, (ground or cut) with an optimal



approximation to the ideal surface ¥,.

An example of case 1 is the generation, for instance, of a die designed for forging of a gear.
Generation of conventional spiral bevel gears and hypoid gears by the “Phoenix” machine
is the example of case 2 generation. Case 3 is the basic idea for a new method for surface
generation discussed in section 4. Only cases 2 and 3 of surface generation are discussed in
this report.

The contents of the report covers the following topics:

i) Description of “Phoenix” and “Star” CNC machines, that are suitable for generation
g

of gear tooth surfaces with new topology.
(ii) Execution of motions of CNC machines.
(iii) Generation of a surface with optimal approximation to the ideal surface.

(iv) Concept of curvatures that are required for computations for the proposed approach

for generation.

1. “Phoenix” and “Star” CNC Machines

“Phoenix” CNC Machine

The “Phoenix” CNC machine (figure 9) is designed by the Gleason Works for genération
of spiral bevel and hypoid gears. The machine is provided with a total of six degrees-of-
freedom. Three rotational motions, and three translational motions are used. The transla-
tional motions are performed in three mutually perpendicular directions. Two of rotational
motions are provided as rotation of the workpiece and the rotation that enables to change

the angle between the axes of the workpiece and the tool. The sixth rotational motion is



provided as rotation of the tool about its axis, and generally is not related with the pro-
cess for generation. The motions with other five degrees-of-freedom are provided as related

motions in the process for surface generation.

Coordinate Systems Applied for “Phoenix”

Coordinate systems S, (z¢, y:, 2z:) and S, (z,, Yp, 2,) are rigidly connected to the tool
and the workpiece, respectively (figure 10). For further discussions we will distinguish four
reference frames designated in figure 9 as I, II, II1I and IV. The reference frame IV is the
fixed one to the housing of the machine. Reference frames I, IT and III perform translations
in three mutually perpendicular directions, respectively. We designate coordinate systems Sj,
and S, that represent reference frames I and I11, respectively(figures 9 and 10). Coordinate
axes of Sy and S, are parallel to each other and the location of S) with respect to S, is
represented by (z{9%), y©») and 2{9%)). Coordinate system S; performs rotational motion
with respect to S, about the z;-axis. To describe the coordinate transformation from S, to
Sp, we use coordinate systems S. and Sy(figure 10). Coordinate system S. performs rotation
with respect to S, about the yn-axis. Coordinate axes of system S, are parallel to the
respective axes of S.; the location of origin O4 with respect to O, is determined with the
parameter xfio‘) = const. Coordinate system S, performs rotational motion with respect to

Sq about the zg4-axis.

“Star” CNC Machine

A version of the “Star” CNC machine that is provided with 6 degrees-of-freedom is shown
in figure 11. Coordinate systems S; (¢, yt, 2t), Sp (Z, Yp, 2p) and Sy (z;, yy, 2;) are rigidly
connected to the tool, workpiece and frame, respectively. Coordinate system S; is parallel
to system Sy and the location of S; with respect to Sy is represented in.S; by (x(fo"), 0,
0). Coordinate system S, performs rotational motion with respect to S; about the y4-axis.

Coordinate system S}, is parallel to S. and the location of S, with respect to S, is represented



in S, by (0, y(©», 2(9%)). Coordinate system S; performs rotational motion with respect to
S, about the z,-axis. Coordinate system S, performs rotational motion with respect to
the fixed coordinate system S; about the zs-axis. Altogether there are three translational

motions along axes zy, y. and z, and three rotational motions about axes zy, y4, and z;.

2. Basic Principle of Execution of Motions on CNC Machine

Consider that the location and orientation of the tool with respect to the workpiece are
given in coordinate systems that are represented for a conventional generator or for an ab-
stract(mathematical) model of the process for generation. We will consider for the following
derivations the example of application of the “Phoenix” machine. A similar approach can be
applied for other types of CNC machines, for instance, for the “Star” machine. Our goal is
to develop the algorithm for the execution of motions of the CNC machine using the initial
information mentioned above. Reference [4] has used for this purpose the existence of a
common trihedron for the two couples of coordinate systems (Sfc), Sz(,c)) and (S'fG), S;(,G))
that are applied for the CNC machine and for the generating process, respectively. The

approach used in this report is as follows:

(i) Consider that 4 x 4 matrices Mgz) and 3 x 3 matrices L(pl:) (k = C, G) have been
derived. The superscripts “C” and “G” indicate the CNC machine and the abstract

generating process, respectively.

(ii) The matrix equality

L = 19 8

pt

will provide the same orientation of S,(k) with respect to S;(,") (k = C, G) in both

reference frames.



(1i1) The matrix equality

MO10001)7=MP[000 1] (2)

will provide the same position vector (0,0;), for both reference frames.

The application of equations (1) and (2) for the execution of motions of the “Phoenix”
machine is considered for the two following cases: (i) a hypoid pinion is generated by appli-
cation of a conventional generator, and (ii) a surface ¥, with optimal approximation to the

ideal surface L, is generated.

Derivation of Matrix Lff) and Position Vector (0:0,)®)

Using a routine procedure for coordinate transformations, we obtain

* L1 6,9) = Loa($)LaeLem(4) L Liac(1)
COS L COS ¢ — sin u cos ¢ sin ¢ 1

—cosusingsiny sinusin¢siny cos@siny

= + sin p cos ¥ + cos p cos ¢ (3)

—cospusingcosy sinpsin@cosy €osoCcosy

—sinusiny — cos psiny

We note that L, and L,,; are unit matrices.

The derivation of the position vector (0:0,){°) in S, is based on the following consider-

ations:



(0n00)© + (0:0,)°) = (00,){"

Thus:
(00;)© = (O0,)0 = (0200 = (0.0a)") = (0 0n);")
= 209(i.), — 20 (im)p — YW (Gm)p = 25" (K5 (4)
Here: z&o") = const., z(9»), y(O») and (¢ n) are considered as algebraic values.

(ii) Vector (0;0,)(©) can be represented in coordinate system Sz(,c) with the following matrix

equation
(0:0,)) = 2009, — 2O L,m[ 1 0 0]
—y L[ 0 1 07 =YLy (0 0 1] (5)
where Lym = LpgLgeLem (Lae 1s a unitary matrix).

Equation (5) yields

2(04) — z(9%) cos ¢ — 2(On) gin ¢
(Otop);C) = | z!9)singsiny — y{Or) cos 9 — z{O8) cos ¢ sin ¥ (6)

(98 sin ¢ cos ¢ + y{O» sin ¥ — z{) cos ¢ cos ¥




3. Example: Generation of Hypoid Pinion by “Phoenix”

Generation of Pinion Tooth Surface by Conventional Generator

The pinion tooth surface is generated as the envelope to the family of tool surfaces that
are cone surfaces as shown in figure 12.

Henceforth, we will consider the following coordinate systems: (i) the fixed ones, S, and
S, that are rigidly connected to the cutting machine (figures 13 and 14); (ii) the movable
coordinate systems S. and S, that are rigidly connected to the cradle of cutting machine
and the pinion, respectively; (iii) coordinate system S, that is rigidly connected to the head
cutter. In the process of generation the cradle with S, performs rotational motion about the
z,-axis with angular velocity w(9), and the pinion with S, performs rotational motion about
the z,-axis with angular velocity w® (figure 14).

The tool (head-cutter) is mounted on the cradle and performs rotational motion with the
cradle. Coordinate system S, is rigidly connected to the cradle. To describe the installment
of the tool with respect to the cradle we use coordinate system S, (figures 12 and 13). The
required orientation of the head-cutter with respect to the cradle is accomplished as follows:
(i) coordinate systems S, and S; are rigidly connected and then they are turned as one rigid
body about the z.-axis through the swivel angle j = 27 — é (figure 13); (ii) then the head-
cutter with coordinate system I, is tilted about the y,-axis under the angle ¢ (figure 12(b)).
The head-cutter is rotated about its axis z, but the angular velocity in this motion is not
related with the generation process and depends only on the desired velocity of cutting.

The pinion setting parameters are E,,— the machine offset, v,,— the machine-root angle,
AB- the sliding base, and AA- the machine center to back are shown in figure 14. The
head-cutter settings parameters are Sgr— radial setting, 6.~ initial value of cradle angle, j-

the swivel angle(figure 13), and i~ the tilt angle(figure 12(b)).

Pinion Tool Surface Equations

10



The head-cutter surface is a cone and is represented in S; (figure 12(a})) as
[ (re + ssina)cos ]
(r.+ ssina)siné

ri(s,0) = (7)

—SCosC&

1

Here: (s,0) are the Gaussian coordinates, « is the blade angle and r, is the cutter point
radius. Vector function (7) with « positive and o negative represents surfaces of two head-
cutters that are used to cut the pinion concave side and convex side, respectively.

The unit normal to the head-cutter surface is represented in S; by the equations

n; = —cosacosfd —cosasiné —sina )T (8)

The family of tool surfaces is represented in S, by the matrix equation

rp(s,0,8p) = My, My Mn, Moc Moy M, r(s, 6) (9)

Here: S, is an auxiliary fixed coordinate system whose axes parallel to S, axes.

[ cost 0 sin: O ]
0 1 0 0
Mbt =
—sint 0 cost O
I 0 0 0 1]

11



[ _sinj —cosj 0 Sg |
cosy] —sinyj 0 0
M., = J J
0 0 1 0
0 0 0 1 |
[ cosq sing 0 0 ]
—sing cosq 0 0
M,, = q q
0 0 10
|0 0 0 1]
(100 o |
01 0 E,
Mno =
0 01 -AB
[0 00 I
[ cosvym, 0 siny, —-AA ]
0 1 0 0
M, =
—sim9y, 0 cosvym 0
i 0 0 0 I
(10 0 0]
0 cos - sin 0
M,, = . ¢p b
0 sing, cos¢, O
|0 0 0 1]

6 =2r — j; ¢ = 0. + m,¢, where 0, is the initial cradle angle and m,, = w(® /(P
Equation of Meshing

This equation is described in Reference [5] as:

n . vieP) — N® . V(CP) — f(3,9,¢p) =0

12

(10)



A , ' . .
N where n? ‘and NP ‘are the unit normal and the normal to the tool surface, and v() is the

relative velocity between the tool surface and the workpiece.
Equation (10) is invariant with respect to the coordinate system where the vectors of the

scalar product are represented. These vectors in our derivations have been represented in S,

as follows,
n, = L. Les Li: 0y
V) = [l = W) xr] + (O )
Here:

ro = M, Mgy My 1y

0,A=[0 —E. AB|T

WP = —[cosy 0 siny]T ; (JwP|=1)

wz(:C) =—[0 0 mgy ]T

Pinion Tooth Surface
Equations (9) and (10) represent the pinion tooth surface in three-parametric form with
parameters s, § and ¢,. However, since equation (10) is linear with respect to s we can

eliminate s and represent the pinion tooth surface in two-parametric form as

(0, p, di) (11)

13



Here: d; (k=1,...,8) designate the installment parameters: E,.,, v, AB, AA, Sg, 6.,
7 and :.

The normal to the pinion tooth surface is represented as

n, (0, #,,dx) (12)

where di (k = 1,2,3,4) designate the installment parameters v, 8., 7 and :.

Derivation of L and (0,0,){®)

Our next goal is to derive the algorithm for execution of motions on “Phoenix ”, knowing
the basic machine-tool settings on the conventional generator.

The coordinate systems applied for the CNC machine are represented in figure 10. The

performed coordinate transformation yields:

(L)' = [au(g)]  (k=1,2,31=1,2,3) (13)
Here:
@] = COS1ZCOS Y sin(g — 7) — sinzsinyy, ,
ay; = —cos(q — 7) COS Ym ,
a3 = sinicos v, sin(qg — j) + coszsin~,, ,
@z = €081 Sin Yy, sin ¢, sin(q — j) + cos i cos(q — j) cos ¢,
+ sin ¢ cos Ym sin ¢,

@y = — cos(q — j)sinym, sin @, + sin(q — j) cos ¢, ,

e

g3 = sinisin vy, sin ¢, sin(g — 7) + sinicos(g — j) cos @, (14)
— COS ¢ COS Ym SIN @ ,

a3 = — COS 2 SiN Yy, cos @, sin(g — j) + coszcos(q — 7)sin ¢,
— 5in % COS Y COS Py ,

as2 = sin 4y, cos @, cos(q — j) + sin(q — j)sind, ,

azz = —sinisin vy, sin(g — j) cos ¢, + sin< cos(g — j) sin ¢,

+ COS 2 COS Yy, COS P

14



The variable parameters ¢ and ¢, are related and therefore the coefficients ay (k =
1,2,3;1=1,2,3) are functions of q.

The position vector (0,0,)) is represented as follows:

(0:0,)9 = —~(M,) [0 0 0 1]7

Sgcos gcosym — ABsiny, — AA
—Sg(sin g cos ¢, — cos gsin ¥y, sin ¢,)
+E,, cos ¢, + AB cos Ym sin @y
—Sgr(sin gsin ¢, + cos ¢ sin ym cos ¢;)
+E,, sin¢, — AB cos ¥y, cos §,
1

a14(9) ]
az4(q)

az4(q)
1

Execution of Motions of CNC

Matrix equality (equation (1)) provides nine dependent equations for determination of
functions ¢(q), ¥(q), and p(q). We can determine these functions using the following proce-
dure:

Step 1: Determination of ¢.

sin ¢ = a;3(q) (16)

This equation provides two solutions ¢; the smaller value of ¢ can be chosen.

15



Step 2: Determination of .

cospsint) = ax3(q), cosdcostp = azs(q) (17)

These equations provide a unique solution for ¥, considering ¢ as given.

Step 3: Determination of u.

cospcos ® =ay(q), —sinpcosd = ay3(q) (18)

These equations provide a unique solution for y, considering ¢ as given.

For the generation a face-milled hypoid pinion, a tool with a cone surface is applied. The
tool surface is a surface of revolution and the rotation of the tool about its axis is not related
with ¢. Functions (17) must be applied and executed only for the generation of face-hobbed
hypoid pinion, that is cut by a blade.

Vector equality

(0:0,)57) = (0:0,);7 (19)

permits the determination of functions z{%%(q), y{9*)(q), and 2{°*)(q). Equations (6), (15)
and (19) considered simultaneously, represent a system of three linear equations in the un-
knowns: z(@») y(On) 2(On) The solution to these equations enables to determine the trans-

lational motions on the CNC machine.

4. Generation of a Surface with Optimal Approximation To the Ideal Surface

Introduction
This section is based on the research accomplished by Reference [2] that was directed at
generation of a surface (3;) that must be in optimal approximation to the theoretical (ideal)

surface X,.

16



The method for generation of £, is based on following ideas:

(1) A mean line L,, on the ideal surface I, is chosen as shown in figure 15.

(2)

The tool surface &, is a properly designed surface of revolution (in particular cases X
is a circular cone as shown in figure 15) that moves along L. Surfaces ¥, and X, are
in continuous tangency along Lmn; M is the current point of tangency (figure 15). The
orientation of &, with respect to £, (determined with angle 3) is continuously varying.
Angle 8 at current point M of tangency is formed by the tangents ty and t; to L, and
the tool generatrix, respectively (figure 15). Tangents t; and t, form plane II that is

tangent to X, and £, at point M.

The tool surface I, in its motion with respect to L, swept out a region of space as a
family of surfaces £;. The envelope to the family of ¥, is surface ¥,, the ground or
cut surface, that is in tangency with the theoretical surface ¥, at any point M of L,

and must be in optimal approximation to X, in any direction that differs from L.
The optimal approximation of & to Xy 1s obtained by variation of angle 8 (figure 15).

The continuous tangency of tool surface I, with £, and properly varied orientation
of £, can be obtained by the execution of required motions of the tool by a computer
controlled multi-degree-of-freedom machine. One of these degrees of freedom, rc.)tation
of the tool about its axis, provides the desired velocity of grinding (cutting) and is not

related with the process for generation of .

The contents of this section cover the following topics:

(1)

Determination of equation of meshing between the tool surface £, and the generated
surface £,. The equation of meshing provides the necessary condition of envelope

existence to the family of surfaces.

17



(2) Determination of generated surface ¥, as the envelope to the family of surfaces %,
swept out by the tool. Surface L, coincides with the theoretical (ideal) surface Z,

along the mean line L,, and deviates from X, out of L,,.

(3) Determination of deviations of £, from X, (in regions that differ from L,,) and mini-

mizations of ¥, deviations for optimal approximation of ¥, to X,.

(4) Determination of curvatures of ¥, that are required when the simulation of meshing

and contact of two mating surfaces are considered.

(5) Execution of required motions of £; with respect to £, by application of a multi-degree-

freedom, computer numerically controlled machine.

An effective approach for the derivation of the necessary condition of the envelope L,
existence is discussed. This method is based on the idea of motion of the Darboux-Frenet
trihedron along L,,, the chosen mean line of X,.

An additional effective approach for determination of curvatures of generated surface X,
is discussed as well. This approach is based on the fact that the normal curvatures and
surface torsions (geodesic torsions) of ¥, are: (i) equal to the normal curvatures and surface
torsions of L, along L,,; and (ii) equal to the normal curvatures and surface torsions of tool

surface T, along the characteristic L, (the instantaneous line of tangency of £; and ;).

Mean Line on Ideal Surface X,

The ideal surface X, is considered as a regular one and is represented as

orp Oty
Ou, 00,

where (up,0,) are the Gaussian coordinates of X,.

rp(u,, 0,) € C?, #0, (upb,)€FE (20)

The unit normal to ¥, is represented as

18



_ Np _ O O
T OING| P Ou, 06,

np

(21)

The determination of mean line on L., is based on the following procedure:

(i) Initially, we determine numerically n points on surface ¥, that will belong approxi-

mately to the desired mean line L,,.

(ii) Then, we can derive a polynomial function

up,-(9p,') = Zajez(,?—j), (2 = 1, ...,n) (22)
i=1

that will relate surface parameters (u,,8,) for the n points of the mean line on L,.

The mean line L., tangent T, and unit tangent t, to the mean line are represented as

foll.ows

or or, du T
SCIONARIE S Il vl W (23)
P P P

The constraint for t, is that it must be of the same sign and differ from zero at the same

intervals of interpolation.

Tool Surface
The tool surface I is represented in coordinate system S; rigidly connected to the tool

by the following equations

T, = z,(us)cos by, Yy = z,(u;)sinb, , z = ze(ue) (24)

19



The axial section of £, obtained by taking 8, = 0 represents a circular arc, or a straight
line in the case when %, is a circular cone. Surface as shown in equations(24) of the tool is
formed by rotation of the axial section of X, about the z;-axis.

The surface unit normal is determined as

Nt art art

nge=-—, Nt:gg—;xb;

N| (25)

Equation of Meshing Between %; and %,
Equation of meshing represents the necessary condition of existence of envelope £, to
the family of surfaces ¥, that is swept out by the tool surface X,.

The equation of meshing can be derived by using the equation

N . v =g (26)

Here: : indicates the coordinate system X; where the vectors of the scalar product are
represented; N(®) is the normal to surface X,; v(*) is the relative velocity in the motion of
X¢ with respect to Z,.

Henceforth, we will consider two basic coordinate systems, S; and S,, that are rigidly
connected to the tool surface ¥, and the ideal surface £,. In addition to I,, we will consider
two trihedrons: Sy(ts,ds,n,) and Sy(ts,dys,ny). Trihedron S, is rigidly connected to £, and
coordinate system S, (figure 16). Here: O, is the point of the chosen generatrix of £; where
the trihedron is located; t, is the tangent to the generatrix at Op; n;, is the surface unit
normal of ¥; at Op; dy = ny X t;; vectors t, and d; form the tangent plane to I, at O.
Trihedron Sy moves along the mean line L,, (figure 17); t; is the tangent to the mean line L,,
at current point M (figure 17); ny is the surface unit normal to ¥, at point M; dy = n; x ty;
vectors ty and dy form the tangent plane to ¥, at point M.

The tool with surface ¥, and trihedron S; moves along mean line L, of £, and O,

20



coincides with current point M of mean line L,,. Surfaces ¥; and ¥, are in tangency at any
current point M of mean line L. The orientation of S, with respect to S; is determined
with angle 4 that is varied in the process for generation.
We start the derivations with the case when Z; is a circular cone(figure 18). The angular
velocity wy of rotation of S; with respect to S, is represented as
ds

wy = (tt; — kads + kgny)— (27)

Here: t is the surface torsion (geodesic torsion), k, and k, are the normal and geodesic cur-
vatures of surface I, at current point M of mean line L, ds is the infinitesimal displacement
along L,,.

The angular velocity £2; of trihedron Sy is represented in Sy as

g _ dg 1T ds
.Qf—wf+a-nf—[t —k, kg+'£] Z{ (28)

The orientation of cone I; is determined by function 3(6,) and

g _ dB db, _

==

ds ~ db, ds

8,1
d,” | T|

(29)
where T, is the tangent to the mean line L., at current point M.
The transformations of vector components in transition from S; to Sy and Sy to Sy are

represented by 3 x 3 matrix operators Ly and Ly;,. Here:

cos —sinf8 0
Lypy=1| sinf cosp O (30)
0 0 1
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siny;cos @, sin+4:sinf; cos~y,
Ly = sin 6, —cos b, 0 (31)

cosyecosy cosy;sinf; —sin~y;

The cone surface I, is represented in S; as follows (fig. 18)

T
ry = U | siny;cosfy siny:sinfy cos-~y; ] (32)

where (u, 0;) are the surface parameters, v, is the cone apex angle.

The unit normal to the cone surface is

T
n: = | cosy,cosf; cosysinf, —sin~y, ] (33)

The sought-for equation of meshing, necessary condition of existence of envelope ¥, is
L]

represented in the form:

ngf) : vfftg) =0 (34)

where

nf = Ly, (35)

The derivation of expression v(ftg ) is simplified while taking into account the following

considerations:

(tg)

(a) The relative velocity vector vy~' can be represented as

ds

(t9) _ () (0
vy LS

ty (36)
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Here, .Q(f’) is the skew-symmetric matrix represented as

0 —Wws3 Wao
n(}:’) = w3 0 —wy (3 7)
—W2 wh 0

Vector §2; is represented by

ap ]T ds

.szwltf+w2df+w3nf= t —-kn kg‘*‘zs' —c_l? (38)

(b) Consider that point N on surface L,(fig. 15) is the point of the characteristic (the
line of tangency of T; and the generated surface 4). Certainly, the equation of meshing
must be satisfied for point V.

The position vector O; N can be represented as(figs. 15 and 18)

O;N = O.N — 0:0; (39)

Here, O, N is the position vector of point N that is drawn from the origin O, of S; to N;

vector O, N is represented in S; as

O.N = use; = uy(sin~; cos 8; i; + sin~y,siné, j, + cos v, k) (40)
where
d
~—(rs)
e, = aut (41)
9 e
aut ¢

is the unit vector of cone generatrix O./V.

Vector 0,0, (figure 18) is represented in S, as
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where [, = IOtOf .

Vector Oy N is represented in Sy using the matrix equation

I'fft) = 'U.thtet - ltL_fbib (43)

(c) We represent now the equation of meshing as

n{) - v = 0l - [20)(uLye, — LLpib)) + (0} - ty)= (44)

(d) The further simplification of equation of meshing is based on the following rule for

operations with skew-symmetric matrices [5}:

ATBWA = cW (45)

Here: B(®) and C(*) designate skew-symmetric matrices, AT is the transpose matrix for A.

Considering that elements of B(*) are represented in terms of components of vector

b=[b1 by b3]T .(46)

we obtain that the elements of skew-symmetric matrix C*) are represented in terms of

components of vector ¢, where

T T
[01 C2 Cs] =AT[51 b2 bs] (47)

: : .. ds : .
Using the above considerations and eliminating P the final expression of equation of

meshing can be represented as
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n® . v = f(u,6,,6,) = un] A¥e, — i BWiy + n{L7t; = 0 (48)

Here:

5 ds s o ds s
A( )-E = L?tnge )Lft y B( )E{ = L?bn(f)Lﬂ, (49)
0 —das ay
A = as 0 —a (50)
—a9 ai 0
" : o dB ]
tcos Bsiny; — k, sin Bsiny, + (kg + E_) COS
s
a1
a | =~ tsin 8 + k, cos (51)
as
: dg. .
t cos Bcosy; — knsin B cosy: — (kg + E) sin 7
0 —by by b —tcos B+ k,sin 8
BO=1| 5 0 b |, b, | =—| tsinf+kncosf (52)
dB
—b, b —(k. + 2
b2 1 0 b3 ( g + dS)

The family of characteristics L, and the instantaneous lines of tangency of £; and ¥, are

represented in S; by the equations

ry = rt(uhot) b f(u’t,ot? 0})) = 0 (53)
where 6, is the parameter of the family of L,. Taking 0, = 0;(,") (: = 1,2,...,n), we obtain

the current characteristics on surface X;.
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It is easy to verify that the equation of meshing between X, and I, is satisfied the current
point M of mean line L,, on the ideal surface ¥,. This means that the characteristic L,
intersects L,, at point M, for which we can take 8, = 0 since ¥, is a surface of revolution. In
the case when %, is a circular cone (figure 18), we can take for point M that u, = ’mi =l

The approach discussed above for the derivation of the equation of meshing can be easily
extended for application in the more general case when the tool surface is a general surface

of revolution.

Determination of Generated Surface Z,
The ground surface ¥, is generated as the envelope to the family of tool surface T;

surface ¥, is represented in S, by the following equations

P (u,(6,), 05, us, 8:) = Lopsr'd) + £ (1,(6,),8,) ,  f(ue, 0, 6,) =0 (54)

Here: f(u.,0:,0,) = 0 is the equation of meshing; rs,t)(ut, 6,) is the equation of tool surface
¥; represented in Sy; rl(pM Nup(8,),8,) is the vector function that represents in Sp the mean
line Ln,; the 3 x 3 matrix operator L,; which transforms vectors in transition from S; to S,

is represented as
tor Gpr Tpr
L= tyy dpy npy (55)

lp: dp; Ty

where

is the unit tangent to the mean line L,;
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or, Or,

e x —
_, Ou, 99
"= er, o, 0
ou, 06,
d, =1, X t, (58)

The sign chosen in equation (57) must provide the direction of n, toward to the surface
of the workpiece under consideration.

Equations (54) represent in S, the generated surface X, in three-parametric form but
with related parameters. Parameter u, is linear in equation of meshing when ¥, is a cone,
therefore this parameter can be eliminated and the generated surface £, can be represented

in S, as

r;g) =1, = 1y(0;,0:) (59)

Remember that surfaces ¥, and £, have a common line L,, where they are in tangency.
Surface ¥, is in tangency with I, along the instantaneous line L, that passes through current
9 g g g g
point M of line L,,. The tangents to L, and L, lie in the plane that passes through M and

is tangent to three surfaces (£,, X, and ¥,) simultaneously.

Optimal Approximation of Generated Surface T, to Ideal Surface ¥,

The procedure of optimal approximation of X, to ¥, is divided into the following stages:
(i) design of grid on X, the net of points, where the deviation of X, from £, will be
determined; (ii) determination of initial function B1(8,) for the first iteration; angle 3
determines the orientation of the tool surface £, with respect to T, (figures 13 and 17); (ii1)
determination of deviations of £, from £, with the initial function B31(8,); (iv) optimal
minimization of deviations.

Grid on Surface T,. Figure 19(a) shows the grid on surface £,, the net of (n,m) points,
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where the deviations of &, from X, are considered. The position vector is 0,Q;; = ri)

(figure 19(b)). The computation is based on the following procedure:

i) The desired components L;; and R;; of the position vector r{"/) are considered as
J "2 4

known.

(i1) Taking into account that

Lij =2z, R =[5 (up, 0,)1 + 159 (up,6,)) (60)
we will obtain the surface ¥, parameters (u},"j), 60" for each grid point.

Determination of Initial Function 8 (6,). The determination of 31)(8,) is based on

the following idea: the instantaneous direction of t, (the tool generatrix) with respect to

tangent t; to the mean line L,, (figure 17) must provide the minimal value |[k{")|. Here: k(")
is the relative normal curvature determined as
k) = kD — kP (61)

where k,(f) and kﬁ”) are the normal curvatures of surfaces £; and I, along t,. In the case of

nondevelopable ruled surface ¥,, vector t; can be directed along the asymptote of Z,.

The requirement that |k£f) is minimal, enables to determine function #()(6,) numerically.

Since we need for further computations the derivative j—z, function () (8,) is represented
as a polynomial function that must satisfy the numerical data obtained for the chosen points
of mean line L,,.

Determination of Deviations of ¥, from X,. We are able at this stage of investigation to
determine the equation of meshing between surfaces X, and ¥,, and surface I, as discussed

above. The computation of deviations of ¥, from ¥, at the grid points is based on the

following considerations:
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(i) Surfaces £, and T, are represented in the same coordinate system (S;) by the following

vector functions:

rp(ups 6p) »  Tg(fyg,0:) (62)
(ii) The position vector r{"" and surface coordinates (ul9), 67 are known for each point
Qg'j ) of the grid on surface X,.
(i) Point Q) on surface X, corresponds to point QY on surface X,. The surface X4

parameters (9§i'j), 9,“’”) can be determined by using the following two equations
y(3) (96), i)y = y ) (ul9), 6
(65, 007)) = 2D (uff, 67)

(iv) Due to deviations of X, from %, we have that xg"j) # z{"). The deviation of £, from

¥, at the grid point Qg"j ) is determined by the equation

8= n;i,j) . (rgi.j) - l.1(;',3')) (64)
where ng"j) is the unit normal to surface ¥, at the grid point ng’j).

The deviation §; ; can be positive or negative. We designate as positive such a deviation
when 6;; > 0 considering that n{" is directed into the “body” of surface ¥,. Positive devi-
ations of &, with respect to ¥, provide that ¥, is inside of &, and surface L, is “crowned”.

It is not excluded that initially the inequality & ; > 0 is not observed yet for all points
of the grid. Positive deviations §; ; can be provided choosing the following options:

(1) choosing a surface of revolution with a circular arc in the axial section instead of a circular
cone; a proper radius of the circular arc must be determined.
(2) changing parameter I, = ‘—OTO_I,‘ (figures 17 and 18); this means that the grinding cone

will be displaced along t, with respect to the mean line L.
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(3) varying the initially chosen function 81)(6,).
Minimization of Deviations §;;. Consider that deviations §;; (: = 1,...,n; j = 1,...,m)
of £, with respect to I, have been determined at the (n,m) grid points. The minimization
of deviations can be obtained by corrections of previously obtained function 4(!)(6,). The
correction of angle  is equivalent to the correction of the angle that is formed by the principal
directions on surfaces £, and £,. The correction of angle # can be achieved by turning of
the tool about the common normal to surfaces £; and X, at their instantaneous point of
tangency M. |

The minimization of deviations é;; is based on the following procedure:
Step 1: Consider the characteristic Lgk, the line of contact between surfaces ¥; and %,
that passes through current point My of mean line L,, on surface ¥, (figure 20). Determine
the deviations é; between £; and ¥, along line Ly and find out the maximum deviations
designated as 5,(;,)1“ and 5,(‘3,)‘“. Points of L,z where the deviations are a maximum are
designated as N,ﬁl) and N,Sz). These points are determined in regions I and II of surface L,
with line L,, as the border. The simultaneous consideration of the maximum deviations in
both regions permits the minimization of the deviations for the whole surface X,.

Note: The deviations of X, from %, along Ly are simultaneously the deviations of ¥,
from I, along Ly since Ly is the line of tangency of X, and I,.
Step 2: The minimization of deviations is accomplished by correction of angle 8 that is
determined at point M (figure 20). The minimization of deviations is performed locally,
for a piece k of surface ¥, with the characteristic L. The process of minimization is a
computerized iterative process based on the following considerations:
(i) The objective function is represented as

Fy = min(6®)__+63 ) (65)

kmazx kmaz

with the constraint §;; > 0.
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(ii) The variable of the object function is AB,. Then, considering the angle

@ = s 1 AB, (66)

and using the equation of meshing with 3, we can determine the new characteristic, the piece
of envelope E_(q") and the new deviations. Iterations are required to provide the sought-for
(opt)

objective function. The final correction of angle ¢ we designate as By

Note 1: The new contact line Lﬁ) (determined with ﬂ,(:z)) slightly differs from the real

) i
contact line since the derivative dl; but not dz is used for determination Lﬁ). However,

Lﬁ) is very close to the real contact line.

Step 3: The procedure discussed must be performed for the set of pieces of surfaces &, with
the characteristic Ly for each surface piece. Remember that the deviations for the whole
surface must satisfy the inequality é;; > 0. The procedure of optimization is illustrated with

the flowchart shown in figure 21.

Carvatures of Ground Surface X,

The direct determination of curvatures of £, by using surface ¥, equations is a com-
plicated problem. The solution to this problem can be substantially simplified using the
following approach proposed by the authors: (i) the normal curvatures and surface torsions
(geodesic torsions) of surfaces ¥, and I, are equal along line L,,, respectively; (ii) the nor-
mal curvatures and surface torsions of surfaces ¥, and X, are equal along line L,. This
permits the derivation of four equations that represent the principal curvatures of surface
%, in terms of normal curvatures and surface torsions of £, and &,. However, only three of
these equations are independent (see below).

Further derivations are based on the following equations:
: o 1
k, = krcos®q+ kirsin®q = §(k1 + k) + §(k1 — k11) cos2q (67)
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t= 0.5(’(21[ — k[) sin 2¢ (68)

Here: k; and kj; are the surface principal curvatures, angle ¢ is formed by unit vectors
e; and e that is measured counterclockwise from er and e; ey is the principal direction with
principal curvature ky; e is the unit vector for the direction where the normal curvature is
considered; t is the surface torsion for the direction represented by e.

Equation (67) is known as the Euler equation. Equation (68) is known in the differential
geometry as the Bonnet-German equation (see section 5).

The determination of the principal curvatures and principal directions for ¥, is based on
the following computational procedure (see section 5):

Step 1: Determination of k{!) and () for surface £, at the direction determined by the
tangent to L,,.

The determination is based on equations (67) and (68) applied for surface £,. Recall
that £, and I, have the same values of k{!) and (! along the above mentioned direction.
Step 2: Determination of k{* and t(®).

The designations k{*) and ¢(?) indicate the normal curvatures of £, and the surface torsion
along the tangent to L,. Recall that k{2) and ¢(?) are the same for I and I, along L,. We
determine k(¥ and ¢ for surface I, using equations (67) and (68), respectively.
Step 3: We consider at this stage of computation that for surface &, are known: k{) and
t1) & and t®, for two directions with tangents 7; and 7 that form the known angle p
(fig. 22). Our goal is to determine angle ¢, (or ¢;) for the principal direction e(Ig) and the
principal curvatures k? ) and kg) (figure 22).

Using equations (67) and (68), we can prove that k() and ) (i = 1,2) given for two

directions represented by 7; and 7, are related with the following equation

(1) 4 4@
m(—ﬁ =cotpu (69)



Step 4: Using equations (67) and (68), we can derive the following three equations for

determination of ¢, k and k(g)

t() sin 2u

tan2¢; =

K9 = kW — W tang

kg‘}) = kM +tWcot g

t(2) — (1) cos 2u

(72)

Equation (70) provides two solutions for ¢ (qg ) = q1 ) + 90°) and both are correct. We

choose the solution with the smaller value of ¢;.

Numerical Example 1: Grinding of Archimedes’ Worm Surface

The worm surface shown in figure 23 is a ruled undeveloped surface formed by the screw

motion of straight line KN (JKN| = u,). The screw motion is performed in coordinate

system S, (figure 23(b)). The to be ground surface ¥, is represented in S, as

rp = Up COs acos B, 1, + up cos asin 0, ip

where u, and 0, are the surface parameters.

The surface unit normal is

Thus:
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psinb, + u,sin acos b,
1 ) ) .
n, = W —pcosf, + u,sinasinb, (provided cosa # 0) (75)
Up COS &

As an example the following data will be used:

Number of threads, Ny, = 2

Axial diametral pitch, P, = 8 (%1-)

o = 20°

The radius of the pitch cylinder = 1.125 (in)

(i) The screw parameter is

p= 5P. = (0.125 in.
(i1) The lead angle is
_p 0125 _ o
tan A, = =125 Ap = 5.7106

The mean line is determined as

1 1.25 0.125
() -5) %

rp(tm,0p) ,  Um = Teora o = 1.3136 in.
1.25 .
where P and 2 determine the addendum and dedendum of the worm.

The worm is ground by a cone with the apex angle v; = 30°, and outside diameter 8 in..
The inside angle 3(1) = —88.0121° provides the coincidence of both generatrices of the

cone and the Archimedes’ worm. The maximal deviation of the ground surface £, from the
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ideal surface £, with the above value of 5) is 3 microns.
The optimal angle 3(°*) = —94.6788° has been determined by the optimization method
developed. The deviations of the ground surface ¥, from %, with the optimal 3(°?) are

positive and the maximal deviation has been reduced to 0.35 microns(figure 24).

5. Condensed Information About Surface Curvature

The contents of this section provide a condensed overview of about the basic equations

of surface curvatures. For further explanation of the details please refer to the books by

Nutbourne and Martin[6], Favard[7] and Litvin[2].

Osculating Plane

Figure 25 shows spatial curve LyM L,. The osculating plane is the limiting position of
such a plane that passes through curve points M, M, and M; as M; and M; approach M.

The osculating plane for a curve at its regular point M is formed by the tangent to the
curve and the acceleration vector for the same point.

The osculating plane and the curve are in tangency of second order. The osculating plane
is an exceptional tangent plane. The deviations of the curve from the osculating plane are
of different signs on the two sides from the point of tangency, and the curve is above and
below the plane (see points L; and L in figure 25). An exception is the case when the point
of tangency is a recti fication point at which the second derivative r,, of a curve represented

by r(s) is equal to zero. Here: s is the arc length of the curve.

Space Curve and Surface Trihedron

Henceforth, we will consider two trihedrons, the space curve trihedron and the surface
trihedron. Each of the trihedrons is right-handed, formed by three mutually perpendicular
vectors. The concept of space curve trihedron is discussed when a space curve is considered

in the 3D space and the curve is not related to a surface. The concept of surface trihedron
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and space curve trihedron are considered simultaneously when the space curve belongs to

a certain surface and the curve inherits some of the properties of the surface to which it

belongs.

Space Curve Trihedron

We consider a coordinate system that is rigidly connected to the curve. Position vector
OC = r(s) determines the current point C of the curve (figure 25); s =A:I\C is the length of
the curve arc; M is the starting point.

Consider that a small piece of curve Ly ML, is located in the osculating plane II,(figure
25). Plane Il is perpendicular to plane II, and passes through point M of the curve.

We define the normal N to the curve as a vector that is perpendicular to the tangent
to the curve. There is an infinite number of normals N to the curve at its point M. All of
normals N belong to plane Il since the unit tangent t is perpendicular to IIy. For instance,
vector N; is one of the set of curve normals(figure 25). Two normals of the set of normals
must be specified:

(i) the principal normal with the unit vector m that lies in the osculating plane II, and is
the line of intersection of planes II, and IIx (figure 25) and
(ii) the binormal b that is perpendicular to t and m simultaneously.

We may identify at each current point of the curve three mutually orthogonal vectors
(figure 25): the tangent vector t, the principal normal m, and the binormal b. The ori-
entation of these vectors in a fixed coordinate system is varied, depending on the location
of the point on the curve. We may consider now a trihedron S, as a rigid body with three
mutually perpendicular vectors e.(i., j. ,k.) that form a right trihedron (figure 26). The
origin of the trihedron moves along the curve, and the unit vectors i., j., k. represent t, m,
b, respectively. Unit vectors t, m, b are taken at the current point of the curve where the
origin of trihedron S, is located at this instant.

The representation of unit vectors t, m, and b in terms of derivatives of vector function
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r(s) is based on the following consideration:

(i) Unit vectors t, m, and b form a right-hand trihedron (figures 25 and 26). Thus

t=mxb, m=bxt, b=txm (76)

(ii) Unit vector t is directed along the tangent to the curve and therefore

t(s)= —=r,

Vector T, is a unit vector since | dr |= ds.
(iii) The principal normal to the curve is perpendicular to the curve tangent t =r,. The

derivative ry, = E(r,) is perpendicular to ry, lies in the osculating plane and therefore the

unit vector m of the principal normal is represented as

rss

lrss|

m(s) =

(iv) Taking into account the expression for b in equations (76), we obtain the following

equation for the binormal

Frenet-Serret Equations

The motion of the trihedren along a spatial curve can be represented in two components:

(1) as a translational motion along the curve (the origin of the trihedron moves along the curve
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and the unit vectors of the trihedron keep their original orientation), (ii) and as a rotational

motion (the trihedron is rotated as a rigid body (to be coincided with the principal normal

m, and the tangent t. to the curve at the curve neighboring point).

Consider that the origin of curve trihedron coincides with point M of the curve and the

unit vectors t., m. and b, determine the instantaneous orientation of the trihedron(figure

26). The neighboring point of the curve is N and |MN| = ds,where s is the arc length of

the curve. The unit vectors of the trihedron at N are determined as (t7, m? and b?), where

t; =t. + t,eds, m; =m.+ m,ds, bl =b,+b,ds

Here:

that are taken at point M.

(77)

Frenet-Serret equations define t,., m,. and b, as follows (see References [6], [7] and [2]):

_ - _ - - 17 -
tsc KoM, 0 x, O t.
mg | = | 7tbhe—kote | =1 =k, 0 1 m,
b, —Tm, 0 —7 0 b,

where «, and 7 are the curvature and torsion of the space curve at point M. It is evident

that in the case of a planar curve, the unit vector b, is perpendicular to the plane where the
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curve is located, b,, is equal to zero and the curve torsion 7 of a planar curve is equal to

Z€ero.

Equations of x, and 7 for a Parametric Spatial Curve
Consider that the spatial curve is represented by vector function r(¢). After derivations

we obtain (see References (2], [6], and [7])

_ raa'm_|l'o><l‘99|
° r; | rg 3

(80)

[(zoyss — Zosye)® + (Tozeo — Tos2s)* + (Yozos — yppzg)?]}/? |

@+ + AT

The curvature %, obtained from equation (80) is always positive because the principal
normal m, is located in the osculating plane and is directed to the center of curve curvature.

The curve curvature , can be also represented in the form

(81)

Here: v, and a, are the velocity and acceleration of a point in its motion along the curve

and are represented as follows

do
Ve reE (82)
de ? d%6
a, = I‘ea((-i't‘) + l‘e(ﬁ) (83)

Obviously, the curvature , can be also represented as
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The space curve torsion 7 is represented by the equation

(re X Tog) - Tsee
7(8) = 85
( ) (rg X l‘ga)2 ( )
In the case of a planar curve, we have (ry X rgg) - rogp =0 and 7 = 0.
Surface Curve Trihedron
Consider a regular surface ¥ that is represented by
r(u,0) €C?*, ryxrg#0, (u,0)cA (86)

A curve on ¥ is determined if in vector function r(u, ) surface parameters are related

with the equation

f(u,0)=0, fE+fi#0 (87)

Figure 27 shows two curves, L, and L,, that pass through the same surface point M and
have the same tangent. Curve L, is a planar curve obtained by intersection of the surface
by the surface normal plane that is drawn through the unit tangent t and the surface unit
normal n. Curve L, is a spatial curve identified locally with the orientation of osculating
plane, the curvature and the torsion of the curve. Considering that a spatial curve belongs

to a surface, we may determine more parameters for the local identification of the curve.
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We have introduced in above the curve trihedron S.(i., j, kc) where i, =t is the unit
tangent, j. = m is the curve principal normal, and k. = b is the curve binormal (figures
26 and 27(b)). In addition, we set up now the surface trihedron Sy(if, js, kys) shown in
figure 27(b). Here: iy = t is the unit tangent to the spatial curve, j; = d is the unit vector
that is perpendicular to t and lies in the plane tangent to the surface at point M; k; =n s
the surface unit normal. Subscript “f” indicates that the surface trihedron and its axes are
considered.

The unit tangent iy = i, = t is determined as

T dé fu
t=——, T=r,+rs5— =ry—To 0 88
T "I o7 (fo #0) (88)
The surface unit normal is represented as
N
n=——, N=r,Xxr (n = ky) (89)

INY

Changing the order in the cross product in equation (89), we can change the direction
of n for the opposite one, and provide 6 < 90°, where 8 is formed by n and m. We remind
that the direction of m is the same as r,, (assuming that the curve is represented by r(s))
and cannot be chosen arbitrarily. Unit vectors t, d, and n form the right trihedron Sy, the

surface trihedron.

Bonnet-Kovalevski Equations

Figure. 27(b) shows the curve and surface trihedrons whose common origin is located
at the current point M of spatial curve L,. Consider now that the common origin of both
trihedrons is moved along L, to the neighboring point N. Both trihedrons will keep the

tangent t” to L, at point N as their common axis, but one of the trihedrons will be turned
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with respect to the other one since the motion along L, will be accompanied with the change
of angle é formed by vector m and n. Obviously, the unit vectors of the surface trihedron
will change at N their orientation with respect to the orientation at M. Designating the unit

vectors at N by t*, d” and n*, we have

t" =t(s) + tds, d" =d(s) +d,ds, n" =n(s)+ n,ds (90)
where
b= (8(6), dy= 2(d(s)), mu = (n(s)) (o1)

Bonnet-Kovalevski equations express the derivatives t,, d, and n, in terms of x,, x,, and

t as follows (see References [6] and [2]).

3\

ts = kgd + K0 = KgJ5 + Ko ky

d, = —kt +tn = —k,i; + tky (92)

n; = —Iint —id = —Klnif -—tjf )

Here: k,, k, and t are the surface normal curvature, geodesic curvature, and the surface
torsion, respectively. The concept of surface normal and principal curvatures is discussed in
many books on differential geometry, but the determination and concept of x; and t requires

additional explanation that is presented next in this report.

Geodesic Curvature

Frenet-Serret equations (92) yield that
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t, = kom (93)

where &, is the curvature of a spatial curve; the curvature center lies in the osculating

plane. Equations (92) and (93) yield that

Kom = K,d + K1 (94)

Equation (94) can be interpreted follows:

(1) Figure 29 shows 2 spatial curve L, on surface . Unit vectors t, d, and n represent the
surface trihedron (figures 29 and 27(b)). Here: t is the tangent to curve L.; d lies in the
tangent plane and is perpendicular to t; n is the surface unit normal. Unit vector m 1s the
principal normal to Lo and lies in the osculating plane. Vector ry, = Kom.

(2) Consider now that the spatial curve L, 1s projected on the tangent plane T and normal
plane N, respectively. The projections are designated by Lt and Ln. We emphasize that
there is no difference between Ly (figure 29(b)) and L, (figure 28) if they are considered
locally. Both curves have the same normal curvature at the point of tangency M.

(3) Vector k,m Is represented as the sum of two vectors: £,d and k.n. The scalar g
represents the curvature of curve L, and the scalar k., represents the curvature of curve Ln.

(4) Equation (94) yields two relations

Ko(m - n) = K, 086 = Kn (95)

Ky =Tse-d =k sin é (96)
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where 6 is the angle formed by vectors m and n that determines the orientation of osculating

plane with respect to the normal plane. Equations (95) and (96) relate curvatures «, and
Kk, and angle 6.

The direct determination of geodesic curvature of a spatial curve represented on a surface
is based on the following equations:
(1) Consider that the surface is represented by the vector function r(u, 6).

(i1) A spatial curve is represented on the surface as
r(u(6),6) (97)

where u(6) is the known function.

(ii1) The tangent to the curve is represented as

du
T = Tu=g +To (98)

(iv) The unit normal to the surface is represented as

N
n=ﬁ, N=r, xrg (99)

(v) An auxiliary parameter a is represented as

du

d
a = Fyu(o2)? + 2rys e + Top (100)

do

(vi) The final expression for &, is
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d*u

T-(axn)—|N|—
Ky = T df (101)
Surface Torsion
The surface torsion t can be represented by the equation
d
t=74+68, =7+ () (102)

ds

Thus, the surface torsion depends on the torsion 7 of the spatial curve along which the
origin of two trihedrons is moved, and on the derivative 8, where § is the angle formed by
the unit vectors m and n of the trihedrons.

The geometric interpretation of the surface torsion may be based on the concept of the
geodesic line (see References [6] and [2]). A spatial line on the surface is the geodesic one if
the principal normal m at any curve point M coincides with the surface normal at M. The

N
geodesic curvature of the geodesic line at any curve point is equal to zero.

It was proven in differential geometry that the surface torsion t is the curve torsion of
the geodesic line.

A simple method for computation of the surface torsion is based on the equation that
has been proposed by Sophia Germain and Bonnet (see References (6], [2] and {7}). This

equation is

t = 0.5(kyr — K1) sin 2q (103)

Here: x; and j; are the principal curvatures of the surface at point M on the principal

directions with the unit vectors e; and err(fig. 30); q is the angle formed by e and t.
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Using equation (103) and Euler’s equations that relate the principal curvatures and nor-
mal curvatures, we may determine the solutions to the following two problems (Ref. [2]):
Problem 1: Consider that two directions in the tangent plane determined with unit vectors
t(1) and t(? are given (figure 31). The angle u formed by t) and t(® is known. Also the
following are known: (i) the normal curvatures () and «{( for directions of t) and t(®,
and (ii) the surface torsion t(!) given for direction t(V).

The goal is to determine the principal curvatures «; and xj; for directions of t(!) and
t(?, and angle ¢ (or ¢).

The solution to this problem is represented by the following equations [2]

tW(1 — cos 2u)

tan 2¢") = 104
k2 — kM — 1 sin 2p (104)

k= k3 — ¢ tan ¢ (105)

k1 = &0 410 cot g (106)

Problem 2: Consider as given t®), t( (figure 31), «{!) and x{». The goal is to relate the
surface torsions for directions of t(!) and t®).

The sought-for relation is represented by the equation [2]

() 4 ¢(2)
MONRNOE cotp =0 (107)
n - n

where 4 is the angle formed by t(*) and t(®).

Numerical Example 2: Determination of the geodesic curvature x, and surface

torsion t of Archimede’s worm surface
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Archimede’s worm surface 1is represented as

r b

u cos a cos

r=| ucosasind (108)

I pf — usina

Here u and 6 are the Gaussian coordinates, a is the pressure angle and p is the screw
parameter. A helix on the Archimede’s worm surface is a spatial curve obtained by inter-
section of the worm surface by a cylinder of radius r;. Our goal is to determine the geodesic
curvature «, of the helix and the surface torsion of the Archemede’s worm surface.

(1) Geodesic curvature £,

Taking into account the r2 + r2 = r¥, we can represent the helix as follows

[ r;cos 6 |

r(6) = r;sin @ (109)

Lp¢9—r,-tana ]

The tangent to the helix can be represented as

T=— = (—r;sinf r;cosf p)T (110)

The unit surface normal is represented by equations (99) and (75)
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psiné + usina cosf

1
n=ﬁ —pcosf@ + usinasiné (111)
u cos
The auxiliary vector a is (see equation (100))
a=(-r;cos§ —r;sind 0)7 (112)

Equations (101) and (110) to (112) yield the following expression for the geodesic curva-
ture
T-(axn) T; COS @

K, = = 113)
TP e P costat 1) (

(2) Surface torsion ¢
From Reference (2] (F. L. Litvin, 1993), the principal curvatures and principal directions

at a surface point can be represented by the following equations:

Lh;+ M .
K,‘—m, (2—[,[1) (114)
e; = F Y (¢ =1,1I) (115)

The coefficients and the partial derivative in the case of the Archimedes’ worm can be

expressed as follows:
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co
L=0, M=——(£—+—S‘;g, F=—psina, E=1 (116)

—~u?sina + (u*sin® a + 4p?u? + 41’4)%, (i=1I,1I)

hi = r (117)
r, = (cosacosf cosasind —sin )T (118)
1 . T
re = m(—uwsasm() ucosacosd p) (119)
Angle g that is formed by tangent T and ey 1s
q= cos'l(ef,l.,ir) (120)

Considering that «, k17 and angle ¢ are given, we can obtain the surface torsion along

the tangent T as

t = 0.5(kyr — 1) sin 2q (121)

(3) Computation results
The to be computed point is located on the helix that belongs to the pitch cylinder of
the worm. The z-coordinate of the helix point is equal to zero, and the Gaussian coordinates

are
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The design parameters are the same as in Numerical Example 1, i.e.

rp = 1.25in, p=0.125:n, a=20°

The results of computation are

1 1 1
Kg = 0'8257E’ t= —0.1540;;, K= —-0.3283;, KIr = 0.02271—,1;

6. Conclusion

From the analytical study presented in this report the following conclusions can be drawn:
(1) The kinematics of two CNC machines with 6 degrees-of-freedom has been described.
(2) The preliminary results of investigation by TCA of the sensitivity of helical gears and
worm-gear drives to misalignment are represented.
(3) A new method for grinding of a gear tooth surface with optimal approximation to the
given surface is proposed.
(4) An algorithm for the execution of motions of a CNC machine for the surface generation

has been developed.
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Fig. 28 Surface normal section and surface spatial curves

79



Ta/ngent plane T

(a) Osculating plane 0

Normal plane N

-
o ey,

Fig. 29 Normal and geodesic curvatures
80



Fig. 30 Interpretation of the surface torsion
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Fig. 31 Surface principal directions and directions
of tangents to two surface curves

82






Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC  20503.

1. AGENCY USE ONLY (Leaveblank) 2. REPORTDATE 3. REPORT TYPEANDDATES COVERED
April 1994 Final Contractor Report
4. TITLEAND SUBTITLE 5. FUNDING NUMBERS
Generation of Gear Tooth Surfaces by Application of CNC Machines
WU-505-62-36
6. AUTHOR(S) 1L162211A47A
F.L. Litvin and N.X. Chen
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORTNUMBER
University of Illinois at Chicago
Chicago, Illinois 60680 E-8712
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Vehicle Propulsion Directorate AGENCYREPORT NUMBER
U.S. Army Research Laboratory
Cleveland, Ohio 44135-3191 NASA CR-195306
and
NASA Lewis Research Center ARL-CR-145
Cleveland, Ohio 44135-3191

11. SUPPLEMENTARYNOTES

Project Manager, Robert F. Handschuh, Propulsion System Division, organization code 2730, (216) 433-3969.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTIONCODE

Unclassified - Unlimited
Subject Category 37

13. ABSTRACT (Maximum 200words)
This study will demonstrate the importance of application of CNC machines in generation of gear tooth surfaces with new
topology. This topology decreases gear vibration and will extend the gear capacity and service life. A preliminary investi-
gation by a tooth contact analysis(TCA) program has shown that gear tooth surfaces in line contact (for instance, involute
helical gears with parallel axes, worm-gear drives with cylindrical worms etc.) are very sensitive to angular errors of
misalignment that cause edge contact and an unfavorable shape of transmission errors and vibration. The new topology of
gear tooth surfaces is based on the localization of bearing contact, and the synthesis of a predesigned parabolic function of
transmission errors that is able to absorb a piecewise linear function of transmission errors caused by gear misalignment.
The report will describe the following topics: (1) Description of kinematics of CNC machines with 6 degrees-of-freedom
that can be applied for generation of gear tooth surfaces with new topology. (2) A new method for grinding of gear tooth
surfaces by a cone surface or surface of revolution based on application of CNC machines. This method provides an
optimal approximation of the ground surface to the given one. This method is especially beneficial when undeveloped
ruled surfaces are to be ground. (3) Execution of motions of the CNC machine. The solution to this problem can be
applied as well for the transfer of machine-tool settings from a conventional generator to the CNC machine. The devel-
oped theory required the derivation of a modified equation of meshing based on application of the concept of space
curves, space curves represented on surfaces, geodesic curvature, surface torsion, etc. Condensed information on these
topics of differential geometry is provided as well.

14. SUBJECT TERMS 15. NUMBER OF PAGES
84
Gears; Gear teeth 16. PRICECODE
AO05
17. SECURITY CLASSIFICATION |18. SECURITYCLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATIONOFABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z38-18
298-102






National Aeronautics and
Space Administration

Lewis Research Center
21000 Brookpark Rd.
Cleveland, OH 44135-3191

Officlal Business
Penaily for Private Use $300

POSTMASTER:; If Undsliverable — Do Not Return



